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The problem of stabllization of steady~state motions of a nonlinear control
system in the critical case of a palr of pure lmaginary roots, is considered
in this paper. Nonanalytical control devices and Liapunov furictlions of a
speclal kind are used. Methods of solutlon of the problem based on the theory
of the stability of motion [1 to 4] and on methods developed in [5 to 7] are
considered. An example is studied.

1, Statement of the prodlem and auxiliary transformation, Let us con-
sider the equations of the perturbed motion of a controlled object

dz/dt = Az 4 Bu + g (x, u) (xE{R"}, us {R™}) (1.1)

where x 18 the n-dimenslonal vector of the pertprbathru u 1s the m-dimen=
sional vector of the control; gfx, ¥) 8re the terms in x and u of order
higher than the first; 4 , B are constant matrices of corresponding orders.
We shall assume that the control uy 1s not affected by disturbances and
does not consist of small terms of order higher than the order of x . We
shall assume firthermore that all the.corfficients of Equations (1.1) are
real, and that ¢(x, u) is analytical wlth respect to x and u .

Let us assume that for u = 0 the unperturbed motion x = 0 of the sys~
tem (1.1) is not asymptotically stable. It is necessary to design a stabi=~
lizing control (controller) u = u{x) such, that the unperturbed motion x =0
of the system (1.1) with this control becomes asymptotically stable in the
sense of Liapunov.

Let us assume we have the critical case of a pair of pure imaginary roots
[7]. Then, as shown in [3 and 7], the system (1.1) can be brought into the
following form by & nondegenerated transformation of the variables:
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%%z-sr—«?«.n—(r«X(&, n v, u), %:K§'+Y(§, m, v, u)
dv . (1.2)
'&}‘~AOU+BOE‘+GS+Z’“+Z(§ n v, u)

Here 2 and =n are scalars, v 1s a {n — 2)-dimensional vector, Ao is

a{n —2) x {(n — 2)-matrix, B, 1s a {n — 2) X m-matrix, ¢ and b are

{n —~ 2)-vectors, X, ¥, Z are the terms in ¢, n, ¥, u, of order higher

than the first and the control u(v, £, n) is supposed to be nonanalytical,

2. Choice of the controller., It can be checked that the system
dv
—; = AoV + Bou (v & {R"?), ue {R™) 2.1

satisfies the condition of stabilizability [7] and that, consequently, one
can design for it a controller of the form

uy (v) = Po (2.2)

where P 1is some m X (n — 2)-matrix.

For brevity let us introduce the following notation:

. 1 toe 220
= —— A
¥, =signz {-—»i for %<0 (2.3)
We shall seek for the system {1.2) a controller of the form
WE s =@+ NN e (2.4)
Py =20 $-4-k=1

From here on, we shall assume §_ >0 and k> 0.
If the coefficients in the series {2.%) are constrained by the condition
dok’m = @sod;t =0 =1...m (2.5)

we obtain a continuous ~ontroller. For P =¢ = 0 , this yields an analyti~
cal controller.

We shall bring the control (2.4) into the system (1.2) and we shall try
to transform it in such & manner that the problem of the stabllity of the
entire system could be solved by considering some simplified system of the
second order, corresponding to & pair of pure imaginary roots. We shall
choose the undetermined coefficients of the control {2.4) on the basis of
the criteria of stability of the simplified system, the construetion of which
we shall consider now.

In agreement with the method of Iliapunov [1 to 3] we shall consider the
system of partial differential equationa

{*— M4+ XE s oz,ou)) + U»§ +YE Moz, u)l =
= Agz + Beu + af + bn+Z(§, N, 2, U) (2.6)
Here, z 1is a {n — 2)-vector, and u = u{z, £, n) in agreement with (2.2),

{2.4). According to Liapunov's theorem [1 and 3], there exists only one
solution for the system (2.6) in the analytical case when P =g = O ,
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Using the nonanalytical control (2.4), we shall search for a solution of
the system (2.6) in the form of series

1 (o]
Z= 2 X ¢l EiE P 0 (i=1...,n—2) (2.7)
D, 4=0 s-k=1 .

with the undetermined coefficlents chmq, choosing the latter such that
Equation (2.6) 1is satisfied identically in €, n, Exs Ny -

We shall substitute (2.7) into (2.6) and gather the components which

include factors of £,, n, . Then Equation (2.6) is broken into four rela-
tions corresponding to the combinations of the indices
(p, 9 = (0,0), 0, 1), (1,0), (1,1) (2.8

whereupon the coeffilclents c§“m which should be determined, are distributed
in these four relations 1in such a manner that they can be determined in
succession.

Thus, in the general case there 1s only one solution of the system (2.6)
which can be represented over the complete range of varlation of the varia-
bles by the single relation (2.7). We shall point out, that on the basis of
the definition of the funetion x,= sign x (2.3), the vector-function z(g,n)
1s differentiable any number of times everywhere, except on the surfaces
E =0 and n =0 .

Substituting the control wu(v, £, n) (2.%) into Equation (1.2) and replac-
ing the vector U by the vector =z (2.7) in the obtained relation, we get
the second order system

1 oc
’Z—%‘ = —An + Z Z askpq‘é’ﬂ"g.”ﬂ."

y §= k=
D, q==0 s-+k=2 (2.9)
dn 1 co y
at = A’E + Z E bskpqgs'r] E.”ﬂ.q
P, =0 s+k=2
The system (2.9) is obtained from the system (1.2) by means of the Liapu~
nov transformation vy = wy+ 2 (i=1,...,n—2) (2.10)

leaving aside all equations corresponding to noncritical roots and writing
w; = 0 1n the remaining. In the sequel, we shall confine ourselves to
those controls (2.4) for which the transformation (2.10) is continuous.
Discontinuities may occur on the surfaces £ = 0, n = O in the right-hand
sides of the transformed system. However we can verify the validity of the
principle of reduction [3] (pp.373-382) also in the above case, so that the
solution of the stability problem of the system (1.2) can be found from a
study of the system (2.9).

Note 2.1 . Let us formulate the principle of reduction for this

problem. Substituting into (1.2) the control wu(v, £, n) in agreement with
(2.4), we get the system

d
XG0 G =MAYEn) (2:41)
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d
= (Ao-+ BoP) ¢+ Z, (£, M, 2) (2.12)

Let us leave Equations (2.12) aside and let v =0 in Equations (2.11).
Then, we get the simplified system of second order

d d (
Taz =-—M+ X, (&1, 0) d—?=xg+yu(g,n,o) (2.13)

Let us assume that in the expansions of X, (§ M, v),Y, (M, v) ¢ 1s the
lowest order of the terms which are functions of v, (1 = 1,..., n — 2) and
that the lowest order with respect to ¥, of these terms 1s r <Cg.

Theorem . We shall assume that the stabllity, asymptotic stability
or instability of the unperturbed motlon £ = n = O of the system (2.13) is
independent of the terms of order higher than ¥ . Then, if the expansion
of the vector 2z,(g, n, 0) begins with terms of order not lower than P ,

where N1 9
— r
P> _L",‘i_ (2.14)

then the unperturbed motion € = n = U, = O for the total system (2.11),
(2.12) 1is correspondingly stable, asymptotically stable or unstable.

The proof of this theorem is basically the same as that given for analyti-
cal systems in Malkin's book [3].

If the solution (2.7) of the partial differential equation (2.6) 1s con-
tinuous in the terms of order s+ k< p— {, then the condition (2.1%) can
be replaced by a weaker condition [3] (p.386) for which

p,:>IV-F1 —q+r
=

. (2.15)

In order to transferm the system (2.11), (2.12) into a system satisfying
the conditions of the theorem, and by the same token construction the simpli-
fied system (2.9), it is necessary to compute the continuous functions =z,
(2.7) up to their terms of order P — 2 and check the existence of the con-
tinuous solution of (2.6) in the terms of order p — 1 . If such a solution
does not exlst, then one must try to eliminate the terms of order p — 1 1n
the expansion of the vector &,(g, n, O) by a proper choice of the controls.

Note 2.2 . It is sometimes expedient to utllize the continuous con-

troller
1 o]

d=ul@+ 2 N o it (f=1,...,m) (2.16)
l=—00 st-k-+I1-=1

which contains the nonanalytical function {*)
L=VBe+m B, 1>0) (2.17)

Then the Liapunov transformation (2.10) 1s continuous, and this eliminates
the complications, connected with the possible appearance of discontinuitiles
in (2.10) when the controller (2.4) 1s used.

3. Ohoioe of the Liapunov funotions. In the investigation of the stabl-
1ity of motion of the system (2.9) with a nonanalytical right-hand side 1t is
useful to consider nonanalytical Liapunov functions. The condition

P vz, 1Y) = |VIF 9 (7, 9) (W =l £0; k=1,2,..) (3-1)

separates those functions for which checking the sign definiteness does not
become more complicated than by using the methods known for analytical func-
tions. The functions (3.1) are even, continuous and monotonous along any
path starting from the origin of the coordinates; they satisfy the condition
wk(o, 0) = 0, kecp thelr sign in all the points of the straight lines

*) This was pointed out to the author by N.N. Krasovskii.
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rday =0 (@ 1s arbitrary) 3.2
and are quantities of the kth order with respect to the first order varia-
bles x and y .

The functions o, (x, y) are sign definite if and only if Equations

¢ P, 1) =0, P (1, p) =0 (3.3)

do not have any roots P >0. This could be proved on the basis of the pro-
perties of the functions (3.1) pointed out above.

It is expedient to construct a Liapunov function in the form (2.7) . The
terivative dy/dt will also have the same form. When the sign-definiteness
must be verified, we shall take those functions of the class {2.7) which
satisfy the condition (3.1). All such functions can be expressed in the form

bl y) = N i)y (k=12,..) (34)
if-j=k

4, PFirst method of solution. We shall assume that the construction 1is
done in such a manner (see the example) that the Liapunov transformation
{(2.10) 1s continuous. If at some stage any cholce of a nonanalytical control
from {2.%) leads to discontinuous transformations (2.10), then one must take
analytical controls at that stage and the previous ones (when necessary),
(see example). We write Equations (2.9) in the form

dEfdt =~ — M+ Xy (B m) + Ko By ) + - -«
dnfdt = Mg + Ys (8, m) + Yo (&, 0) + . .. (4.1)

where X,, ¥, represents the ensemble of the terms of Xth order in Equations
(2.9). We try to construct a Liapunov function satisfying the conditions of
the asymptotic stability theorem 1n the form

V=884+n+V;En +VeEm+... (4.2)
where V, (€, n) 1s a continuous function of the kth order of the class (2.7)
1
Vi@, m) = 2 D B kEmiErya (k>3) (4.3)
P, q=0 i4+j=k
oij = Biogl =0 (k=34 ..) (4.4)

The total derivative dV/dt , on the basis of Equations (4.1), is obtained
in the form

O BE M) F - (45)
v, oV,
e =1 (e 5 = n 5+ At (4.6)
av, v,
=X vt B (G ) @1)
idj=kt1

(k>3; i>3; X0=Y0=X]=Y1—:O)

The function F, (g, n) depends on the functions V¥,,..., V,_, and can be
computed from (4.7), if these functions are known. Let us consider the
ensemble of the terms of third order in (4.5)

Wy OV
frE.m) =1 (E = 35_—’) -+ 28X, 4 21Y5 (4.8)
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We shall require that for these terms the condition
J3 By M) = —P; (§, M) (4.9)

be fulfilled, where ¥;(2, n} 1s positive-definite function from (3.4). For
instance one can take

Y & M) = 13°8%s + 1es*™Me (150 > 0) (4.10)

The condition {4.9) becomes a partial differentlal equation with respect
to the function Vs(g, n) which can be solved by the method of undetermined
coefficients. We shall substitute in (4.9) Zxpression V,;(e, n) in the form
(4i3) a?d we shall not fix beforehand the coefficients v,,;® of the function
¥alf, n).

Then, we shall obtain a system of relations (A) consisting of: (1) the
conditions of continuity (4.4), (2) the conditions of positive definiteness
of 3(7, m) in the form of inequalities imposed on vy,,®, (3) 1linear equa-

tions with constant coefficents expressing the condition (4.9).

The stabilization 1s guaranteed by the control (2.4) if the coefficents
ai'kpq' p?jm’ 'Y?j can be chosen such that the system of relations (A) is
satlisfled. Thus, it 1s sufficient to conslider only the terms of flrst order
in (2.4) whereupon we get a family of controllers depending on the parameters
vyy® « If the relations (A) cannot be fulfilled because of the coupling, or
the structure of the system (2.9}, then the conditions on vys® must be
loosened, requiring only that the function {2, n) be positive semi-definite
Ps (E, ) > 0. This system of relations (A’) can always Le satisfied. It is
sufficient, for instance, to equate to zero all the coefficents o/,,, enter-
ing f5(g, n) in (4.8), to take 1, = (0 and to find a sole analytical solu-
tion for Vs(£, n) . Then it is necessary to consider in (4.5) the set of
terms corresponding to the next measurement.

We shall note that for any function V, {2, n) of the form (4.3) for
E mwcoBH , 1 =8ing , the equality

av, [ 9V avk)
% =45 — ot

(4.11)

E=cos®
N =8in 0

is valid everywhere except on the surfaces € =0, n =0,

We shall denote by W, the set consisting of the points of the phase plane
for which ¥,(%, n) = O (excluding the origin ¢ = n = 0) and some neighbor-
hood of these points., If ﬂk = 0, M, consists of the whole surface except
the origin, 1if ¢3(§’7ﬂ ;;(L M, consists of the open domains limited by
the paths (3.2) infinitely close to these straight lines (3.2) for which
¥2= 0 . Let us consider the set of the fourth order terms in (4.5)

fom = (85— G+ FaE ) (4.12)
We require that for those terms the condition
FaEo )= —Pa (& )+ ¢4 (8% 4+ n?)? (s = const) (4.13)

be satisfied for the set M, . Here w.{f, n) is some function from (3.%),
the coefficents v}, of which we shall not fix. We shall calculate the
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integral 9z

co=cy (1) = ‘;;ng [F4(cosB, sinB) + Py(cosh, sin@)]dd  (4.14)
[

The imtegral {4.14%) determines the linear relation between ¢, and the
parameters y?3 for which 1t 1s possible to find a solution for the system
of linear equations obtained when the partial differential equation {4.13)
is solved by the method of undetermined coefficients. Let us consider the

function D, =P, (5, 1) — ¢4 (E2 + 12 (4.15)

which belongs to the class (3.4). The system of relations (B) and (B’) are
obtained from relations {(A) and {A’) when the functions ¢,{¢, n) are replaced
by the function &,{g, n) of (4.15) and the linear equations necessary for
{(4.9) by the linear equations determined for (4.13). Thus, the condition of
sign definiteness or sign .invariability of &, have to be established only
for the set M. Since &,(£, n) is chosen in the class (3.4), its condi~-
tion of positiveness on the set #, requires, according to (3.3) that the
roots p >0 of Equation y;(p, 1) = O yleld positive values to the poly-

nomial 3 4

Qufp, 1) =72+ 10+ 100" + 1,90 + 1,00
and simultaneously, that the roots p > {} of Equation 1p3(1,pﬂ =} yield
posltive values to the polynomial

@y (1, p) = 70" + 1,50° + 130" + Totp + T
The coefficients B%pqa Y% and the remaining coefficients a{kpq must be
chosen such that the relations (B) or at least the relations (B’) be satis~
fied. In the latter case 1t 1is necessary to determine the set #, concisting

of the neighborhocod of the points M; for which &,{¢, n) = 0 , and consider
the ensemble of the terms of the following measurement and so on.

With this procedure, we obtain: {i1) relations (A), (A’) for the odd
orders of (4.5), (11) relations {B), (B’) for the even orders % = 2n with
functions in the right~hand side of (4.13) or the form

O (&, ) =P (8§, M) — cx (B + n?)¥* (4.16)
and (1i1) the system of enclosed sets
(R} = M, DM, DM,D. .. (4.17)

The conditions of sign definiteness (A), {(B), or of sign invariability
{(4’), (B’) for the terms of the xth order in {4.5) are considered on the set
M

[

Let us assume that the set M#,_, (L 1s an even number) includes the whole
phase plane except the origin of the coordinates; this means that for 3 << k,
s§<{{—1 the identities P (E, ) = Dy (E, ) =0 are satisfied. We
shall determine a system of relations (C) by replacing in the relations (B)
the conditions of positiveness on the set WM,_, by conditions of negativeness,

The controller will be designed, if an instant comes when after some step
1>>3 the set ¥, is empty, i.e. the relations (A) and (B) are satisfied.
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Whereupon for the terms of lower order of f;(§, m) in (#.5), 3Tk~ 1
the relations (A’) or (B’) are fulfilled, and in addition the right-hand
sides of the noncritical equatlons of the transformed system for w,= 0 do
not contain terms of order

[ — r
s<——~—qr+
(see note 2.1 and Formula (2.1%) for ¥ = £ — 1) .

If, for the same conditions for the right-hand sides of the noncritical
equations, for any possible values of agkm“ ﬁg;m yg (m <Cl) the rela-
tions (C) are satisfied on the basis of the coupling or the structure of the
system (4.1), for some [ >4 and when the conditions

Pr (ga n) = @, (Ea n) =0
for some 3 < k,s<(l—1 are fulfilled, then the stabilization by the
control (2.4) 1s not possible

We shall note that once a first sign invariable function wk(g,n);a() or
@, (§, ) >0 has been chosen, we can take the functions ¢, ® (s >k + 1),
wi.icn wre ston chancing; in the phase plane and lale nonneggtiJ% values on

the sets M, (s=k +1).

The validity of the given statements follows from Liapunov's asymptotic
stability theorem [1], Chetaev's instability theorem [2] and the principle
of reduction for a quasi-analytical system.

Note 4.1 . Let us consider a particular case. Let k>3 be the
first index in (4.5) for which the relations (A’) or (B’) are fulfilled,
whereupon the function ¢ (¢, n) or & (£, n) is not identically equal to
zero.

We shall assume that if we take V.(§, M) =0 in (4.2) for ¢t > k then,
according to (4.7), there follows F 1{& M) '=0. We shall denote the men-
tioned function by mk(g, n) and we ghall consider the functions

W =V 4 atn® — be*n (k 0dd) (4.18)
W=V +ain'n, —bE*E,  (k even) (4.19)

where V 1s the function (4.2) constructed up to the terms of order % .
The total derivative of the functions (4.18), (4.19) on the basis of Equa-
tions (2.9) can be written in the forn

= — @ (6 1) — | M [*¥ 4 Wk [ [0 o Akl [ [F = Rb € T L (4.20)

where lgl = £, 1s the absolute value of & . Whereupon, on the basis of
the assumptions V, (£, m) =0 for i>k F, , =0, and according to 4.6) we
shall have f,., (§, Ln?;s 0, consequently, thé derivative dw/dt in (4.20) does
not have any terms of order % + 1 except for those written out. Since

9, (5,M)>0 1is a function of the class (3.1), it can become equal to zero
only on the straight lines (3.2). Let us suppose that £ = q,n are those
straight lines. We shall choose the numbers a, b in (%#.18) or (%4.19) such
that the inequality

a—kb|a;Ft —kaa? 4+ b o [F1>0 (4.21)
be satisfied.

Then, the set of terms of order (& + 1) of (4.20) 1s negatlive in the
neighborhood of the straight lines € = a;n . If it is possible to choose
a and b such that they satisfy simultaneously all the inequalities (4.21),
then it 1is not necessary to consider the terms of higher order and the deslgned
control stabilizes the system. In particular for a straight line § = an
such a choice of a, b 1is possible for any 0 < |a|< oo,
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5. Seoond method, The controller (2.4) can be designed by using the
method of investigation of [3] in connection with an estimate of the sign
of the contour integrals. Thus we obtain

dr/d0 = 2F, 8) + SF,0) + ..., r{, ¢} =¢ ¢ = const (5.1)

The functions F,(0) (I >2) are determined in sequence and depend on
the coefficients af,,, in {2.4). Let us formulate the result.

The stabllization is guaranteed by the control {2.4) if the transformation
{2.10) 1s continuous and the coefficlents aék,, are chosen such that after
some step > 2 the conditions

21 an
Jl=S F(0)d8 <0, Jk=S F,(6)d0 =0 R<hk<I~—1) (5.2)
0 (1]

are satisfiled and that, furthermore, the right-hand sides of the noncritical
equations of the transformed system for w,= 0 do not contain terms of order
s<(+1—q+n/r (see (2.13) for ¥ = ).

If, for any possible af,, , on the baslis of the coupling or the structure
of the system (2.9), the condition , > O 1s satisfied for sSome 1>2 and
Je= O for 2< k< l—1 then the stk

{2.4) 1s not possible.

Note 5.1 . This method can also be used to check for asymptotic
stabllity when a control has been preliminary designed by means of a Liapunov
function having a negative definite derivative. For that purpose the integrals
(5.2) must be evaluated. Let p > 3 be the index of (4.5) for which the
relations (A’) or (B’) are fulfilled. 'The unperturbed motion € = n = O
will be asymptotically stable independently of the terms of order higher than
P~ 1 1if, and only if the conditions (5.2) are fulfilled for some 2€£<€ p-1,

bilization by a control of .the form

6. Example (™) . Let us consider a pendulum in gimbals, having two
degrees of freedom and bearing a material sphere which can rotate around the
arm of the pendulum. It is required to stabllize asymptotically the equi-
1ibrium position of the pendulum, using the moment u, which rotates the
sphere around the arm and the moment u, in one of the planes of oscillation
(see Fig.1). Let

40 d d
—{E'lea 6=372x d_?'—:x}!) @ =y, -‘%'p:g! "P=T} (6‘1)

The equations of motion of the pendulum expressed with the accuracy up to
the Uth order terms in the normal form of Cauchy have the form

d$1 d:cz

=t 0 4 x,@) G =n (6.2)
u dx dz.
2 o = — st us+ 2%k + X =z (63)
d d
7 ?ué = — 1 — 2kzyzs + Y —d?— =&  (6.4)

Here u,, up; are controls proportional to
the moments, A& > O 1s a parameter, X&), Y8
(s =2, 3) are ter of order 8> 1 ,'1n
respect to the variables x, (t = 1,...,4),
uy, (J =1, 2); £ and n are quantities of the
Fig. 1 first oeder.

The variables x, (4 = 1,..., 4} of Equa-
tions (6.2), (6.3) are fully controllable, while the variables £ , 1 1in
the first approximation are not controllable and Equation {6.%) has a pair
of pure imaginary roots Xi,,,= + t¢ . The linear controller of the first

*) This system was suggested for conslderation by Krasovskii.
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approximation control subsystem can be taken in the form 4 — —2z, — z,,
u," = —22?3.

1. We search for the complete system a controller {(2.%) of the form
wp=u 4+ a0 fuP a0 (=12 (6.5)

where u,ls) is the function of the 8th order of (2.7).

We shall find at the beginning the first order terms of (6.5). We shall
write the function of the first order from the relation {2.7)

2 = p.& + gm (i=1,...,4 (6.6)
where

Py =pot + P’ Ee  pa'a F PiEana 6.7)

and analogously for ¢, (t =1,..., 4). ¥®rom the reguirement of continuity
of the Liapunov transformation (2.10) and Equation (6.6) we obtain

Py = Poi + Pligm q; = ‘Ioi + %i"l* (6.8)

We shall substitute (6.6) in Equation (2.6), established for the system
(6.2), (6.3), (6.4), and express the terms of first order.

The necessary conditions of solvability of the partial differential equa-
tion (2.6} with respect to z{V have the form

fga=pPn —P2r=qn Q=PpPy —Pi=4Gs 6.9

On the basis of (6.8), (6.9) the quantities p,, ¢, must be independent
from £,, n, . Thus, the functions (U will be simiiarly independent from
fus Ny » 1.e. the first order terms of’ (6.5) are linear, and one can try to
determine them, by means of procedure used to investigate the stability in
analytical case [1 to 3, 8 and 9].

We set u U oz 0, and we shall search for the terms of second order in
(6.5), We can also take Pp,=g,= O, i.e. z{U) =0. The second order function

from (2.7) is 5@ = a8 + bEn + an? (i=1,...,4 (6.10)

where a,, b, and o, , are functio&s of £, ny of the same form as p, (6.7).
The conditions of continuity of zi(2 have the form

a; = agt + a,%t,, ¢ = cot + cyiny, (6.11)

We shall substitute (6.10) into Equation (2.6), set for the system (6.2),
{(6.3), {6.4) and we shall express the second order terms. The conditions of
Solvability of the partial differential equation (2.6} with respect to z(®
are obtained in the form

by=a; = —¢, 2{g—a) =258, bi=a3=—c, 2(cq— g, =2d (6.12)
From {6.11) and {6.12) we obtain the equalities
bg = gy = 0 = V, b‘ = Qg == ~~Cg = [k (6.13)

where v and u are some numbers. The relations (6.12) and (6.13) are
limitations on the coefficients of (6.102. If the functions 1.2 are chosen
in agreement with the choice of z® in {6.10), then in all noficritical equa-
tions, all the terms of second order depending only on £ and n are elimi-
nated after ILiapunov's transformation. We shall introduce Expression {6.13)
into (6.10) and we shall subatitute the obtained functions into (6.4)

d ¥ , an
B e 2k (v 4 bain — ) (2 - Bk — ) + YO, G =E (844)

We take the Liapunov function
V= B+ 3 — 1t (6.15)

We compute the derivative of (6.15) on the basis of {6.1%) and require
the fulfillment of the expression
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av \(s)
(Fi‘) ¥ 4k (vER + ban — vi) (BE2+ b — ) =
= — ‘Ps (E' "l) Es '\'155&. - TSE”I"}. - 73531']25' —_— T‘Eznaﬂ. —_ Tﬁ&ﬂ‘&. —_ TGTlﬁﬂ. (6.1&)

Since we must have y,20 (t= 1,...,6% in {6.16) and since vy and u are
numbers, then, in order to satisfy (6.16) it is necessary to take
V=R =T =Ta=T¢e=Ts=Ts =0, and to satisfy the condition

—bkboboEME = — it 6.47

We take »,w g,, Pym 1 ; then y,w 45 > O ., Substituting the found
values for a,, b, o, into (6.10) we get from Equation (2.2% some relations
for the choice of u.(‘l) (Gj=1,2). The remaining values d,, 0., G4, 0¢ must
be chosen to satisfy ‘the conditions (6.12) in which J= £, b3= 1 , We

shall take for instance ag = —Yoly, g = —g, cg =€ =10 3 then we obtailn
n,® = 1388, + 2EnE, — nE,  w® = 18T + 28 — (6.18)

Taking, according to {4.18), the Liapunov function
V* =V + akn® — by (6.19)

we find on the basis of (6.1%) that it has a negative definite derivative
for @ = b =1 . If we change the terms of fifth order in (6.14), we may
always choose on the basis of (4.21) quantities a and » 1in (6.19) such,
that dv*/dt be negative definite. Consequently, when a control is chosen
in agreement with (6.5), (6.18) the simplified system (6.14) becomes asymp-
totically stable independently of terms of order higher than the fourth.

The Liapunov transformation is determined by the continuous functions

2y == ENEes 23 = —1/,E%,, 2, = £, 3, = —/,E%  Carrying out transformation, we
get in the noncritical equations terms of the third order 2iE%i,, X,¥* in
the equations for x,, xs which include the controls u,, ug - asymp-
totlc stabllity of the simplified system is determined terms of order not
higher than ¥ = 4§ , For our example, ¢ =" = 2 , and according to (2.14)
p2Ys(d+1—2+4) =235 1.e.p =4 , Expressing the ternﬁ of third
order in Equation (2.6), 1t can be seen that for 4, — ¢= u, =0 , the
terms of third order in the functions =z, (2.7 ) are discontinuous; conse-~
quently the condition (2.15) cannot be applied and it 1s necessary to sup-
press the factors 2ximt,, X,* by means of the controls u,, uz . Thus the

controller )
Uy = —2x; — x5 + /,8%, + 28n, — 0%, — X%, n)
ug = —2zy + 1,82 + 28y — 9 — 2&EME,
stabilizes the pendulum on the basis of the complete system of equations,

2, Stabilization by the controller (2.16). In (6.2), (6.3) and (6.4) we
shall discard the terms of order higher than the second and we shall substi~-
tute the functions

En

fH = Z3) =
Vg fpm =1
in place of x, and x, 1n the equations for the critical variables (6.%).

On the basis of the obtained equations the derivative of the Liapunov
funection ¥ = g2+ n® 1s always negative

(6.20)

dv \(® 4kE3 2
(72") = — 4kE2123 == VTE,’_—:—_W; <O (6.21)
We take the functions " b
ag® -+ bEn - en?
2y = —"—V———ag_z + B s 23 = pE + m (6"22)

We select the coefficients ¢, 8,65, ¢,9, 3 in (6.22) and the controls
Uy s Uy, of the form (2.16) so that after the Liapunov transformation {2.10),
the noncritical equations (6.2), (6.3) do not contain terms of first order
depending only on ¢ , n ., This can be obtained, writing for instance,
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a=0b=c=q=0p=—1,a=—!; and taking the controls

g B A2
T Yavete

Choosing in agreement with (4.18) the Liapunov function V*= V+ ver—uesn,
it can be verified that the motion ¢ = = 0 of the simplified system
obtained by using the control (6.23) in ?6.2), (6.3), (6.4), is asymptotically
stable, independently from the terms of order higher than the second. As far
as the Liapunov transformation (2.10) i1s continuous in the present case, we
may replace the conditions (2.14) by the condition (2.15), according to which
for ¥ = 2 we have p>Y2+1—2+2)=15, 1,e. P = 2 , Consequently,
the terms of order higher than the first in noncritical equation do not per-
turbe the asymptotic stability and the controller (6.23) stabilizes the pen-
dulum on the basis of the total system of equations.

Uy = — 21

up = — 2a3 4+ 21 (6.23)

The author expresses his gratitude to N.N. Krasovskii for his advice on
the statement of the problem and his valuabl remarks.
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